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PROJECT Workshop Theme
For any cancer immunotherapy, how to choose an appropriate 
tumour model to represent a patient population and how to 
predict clinical efficacy?

• 3 members each team
• Desirable: Each team has at least 1 biologist and 1 pharmacologist
• Brainstorm: Sticky notes, flipchart
• Each team will present the strategy in 3 minutes

It’s OK to introduce yourself, say “I don’t know”, ask for more clarity, say you don’t 
understand, ask what acronyms stand for, ask why and why not, depend on the 
team, ask for help, not know everything, have quiet times, have loud times, make 
mistakes, sigh, be excited.
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Tao You, PhD. PK/PD Modelling & Data Scientist, Beyond Consulting Ltd

• Chemical Engineering, BE, 1998-2002

• Biological and Chemical Engineering, MSc, 2002-2003
• Cancer Bioinformatics, 2003-2005

• Systems Biology, PhD, 2005-2009

• Systems Biology, Postdoc, 2009-2011
• Physiological Modeller & PK/PD Modeller, 2011-2015

• PK/PD Modelling Lab Head, 2016-2018
• PK/PD Modeller & Data Scientist, Aug 2018 – now

https://www.letsgobeyond.co.uk/testimonials

Singapore–MIT Alliance

Instructor

https://www.letsgobeyond.co.uk/testimonials
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Tao serves as a PK/PD modelling consultant for 

03/12/2019 www.letsgobeyond.co.uk/workshops 4



THE OPEN 

PROJECT

5

John Prime - Career Overview

PhD Liver cancer (HCC) genetics - Oxford (Prof. J O’D McGee)

2000 - 2003   Amersham Biosciences
• Quantitative proteomics - 2D-DIGE (2D Difference gel electrophoresis)

2003 – 2010   KuDOS Pharmaceuticals / AstraZeneca

• Translational Science/Biomics team leader => Head of Biomics

2010 – 2016   Oncology Research Bioinformatics, MedImmune

• Led Oncology research (UK & USA) Bioinformatics support for IO projects

2016 – Present   Principal Consultant, OncoBioinformatics Consulting

2017 – Present   Senior Bioinformatics Scientist, Horizon Discovery
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“We can judge our progress by the courage of our 
questions and the depth of our answers, our 
willingness to embrace what is true rather than 
what feels good.”

― Carl Sagan (1934-1996)

1. Identify the right questions
2. Go deep by asking why (a few times)
3. Sort the fact from fiction
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• Recognise the importance of translation 
• Xenograft model: Characterisation, translation, evaluation
• Syngeneic model: Characterisation, translation
• Patient population: Characterisation, translation
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Duration Time

• Intro Tao and John 5 mins

• Participant Intro 10 mins
• Grouping 5 mins

• Lecture 1. Clinical translation of xenograft models (Tao) 20 mins 9:40am

• Lecture 2. Using bioinformatics to aid clinical translation to models (John) 20 mins
• Group exercise 1: Characterise a patient population for a new CI target 30 mins 10:30am

and match it to in vitro/in vivo models
• Coffee Break / networking / further discussion 10 mins 10:40am

• Lecture 3. Clinical translation of syngeneic models (Tao) 20 mins
• Group exercise 2: Clinical translation of syngeneic models 30 mins
• Group presentations 20 mins 11:50am

• Discussions & feedbacks 10 mins 12:00pm

8

Agenda
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PROJECT Lecture 1. Clinical translation of xenograft models
• The importance of translation

• Regulatory approval requirements
• Success rate in oncology drug discovery & development projects
• 3 pillars & 5Rs

• Clinical translation of xenograft models
• NCI: Mouse MTD efficacy does not predict clinical efficacy
• Chemo: Mouse MTD AUC and clinical AUC => clinical fate
• Chemo: Qualify A2780 (ovarian) xenograft model with PK/PD modelling
• Chemo & Targeted therapy: Preclinical efficacy => Clinical efficacy (ORR)
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• Range of omics data types
• Data complexity in clinical/patient samples 
• Value of integrating the right models to the right granularity of patient data

• Example I:-
• Small molecules/targeted therapy – Selecting the right PDX models to match a patient subset
• Challenges, caveats and pitfalls

• Tools and omics data sources (i) 

• Biologics – Cancer Immunotherapy
• The challenges of modelling the immune system in cancer
• Response: Tissue of origin not accurate predictor 
• Cancer immunotherapy – Requires a holistic data paradigm

• Example II:-
• Biologics - Immunotherapy
• Further challenges, caveats and pitfalls

• Tools and omics data sources (ii) – Cancer Immunotherapy
03/12/2019 www.letsgobeyond.co.uk/workshops 10

Lecture 2. Using bioinformatics to aid clinical translation to models
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PROJECT Lecture 3. Clinical translation of syngeneic models
• Clinical translation of syngeneic models

• Adaptive immunity to tumours
• Resistance mechanisms to immunotherapy
• Modelling efficacy: RT/αPD-L1 combination in CT26 syngeneic tumour model

• Group exercise 2
What are the questions to consider when prospectively translating syngeneic 
model results into the clinics? 

03/12/2019 www.letsgobeyond.co.uk/workshops 11



THE OPEN 

PROJECT

Lecture 1. Clinical translation of xenograft models
• The importance of translation
• Clinical translation of xenograft models
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1.1 The importance of translation
• Regulatory approval requirements
• Success rate in oncology drug discovery & development projects
• 3 pillars & 5Rs
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PROJECT Clinical endpoints for cancer trials
Overall Survival

• The time from randomization until death from any cause, and is measured in 
the intent-to-treat population

Surrogate endpoints based on tumour assessments
• Objective Response Rate: The proportion of patients with tumour size 

reduction of a predefined amount and for a minimum time period
• Disease-Free Survival (Event-Free Survival): The time from randomisation 

until disease recurrence or death from any cause
• Complete Response: No detectable evidence of tumour
• Time to Progression: The time from randomisation until objective tumour 

progression
• Progression-Free Survival: The time from randomisation until objective 

tumour progression or death, whichever occurs first
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FDA. (2007~2018) Guidance for Industry: Clinical 
Trial Endpoints for the Approval of Cancer Drugs 
and Biologics.
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PROJECT FDA regulatory approval requirements
Traditional approval (previously known as “regular approval”)

• Longstanding route of drug approval based on the demonstration of clinical 
benefit or an effect on a surrogate endpoint known to predict clinical benefits

• Supported by OS
• Supported by ORR in selected settings

Accelerated approval
• Approval associated with use of a surrogate endpoint or intermediate clinical 

endpoint that is reasonably likely to predict benefit

03/12/2019 www.letsgobeyond.co.uk/workshops 15

FDA. (2007~2018) Guidance for Industry: Clinical 
Trial Endpoints for the Approval of Cancer Drugs 
and Biologics.
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Zettler M et al. (2019) Surrogate End Points and 
Patient-Reported Outcomes for Novel Oncology 
Drugs Approved Between 2011 and 2017. JAMA 
Oncol. 3 Jul 2019



THE OPEN 

PROJECT ORR is significantly associated with approval decision
Question Is ORR associated with 
regulatory approval of an anticancer 
regimen?

Data 1800 trials in advanced solid 
tumours (1st Oct 2007 ~ 30th Sep 2010): 
NSCLC, CRC, melanoma, renal cell cancer

Result Association is statistically 
significant: For single-agents, 89% of 
regimens with ORR ≥ 30% achieved 
approval

Appropriate ORR is necessary but 
insufficient to achieve approval
Can translational modelling predict ORR?
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Oxnard GR et al. (2016) Response Rate as a 
Regulatory End Point in Single-Arm Studies of 
Advanced Solid Tumors. JAMA Oncol. 2(6):772-9.
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PROJECT Criticisms of the extensive use of ORR
• ORR is not predictive of OS (many references)
• PFS is not predictive of OS
• DFS is strongly associated with OS only under certain circumstances
• Only ~20% of FDA approved new regimens showed OS improvement 

(11th Dec 1992~ 31st May 2017)
• The use of ORR and other surrogate endpoints might need restricted 

to cases where they predict OS
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Fischer A et al. (2016) Extrapolation from 
Progression-Free Survival to Overall Survival in 
Oncology. OHE Research paper 16/07.

Mauguen A et al. (2013) Surrogate endpoints for 
overall survival in chemotherapy and radiotherapy 
trials in operable and locally advanced lung 
cancer: a re-analysis of meta-analyses of individual 
patients’ data. Lancet Oncol. 14(7):619-26.

Gyawali B et al. (2019) Assessment of the Clinical 
Benefit of Cancer Drugs Receiving Accelerated 
Approval. JAMA Intern Med. 179(7):906-913. 

Kim C & Prasad V (2016) Strength of Validation for 
Surrogate End Points Used in the US Food and 
Drug Administration’s Approval of Oncology Drugs 
Mayo Clin Proc. pii: S0025-6196(16)00125-7.
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~186,000 trials in total

Lo et al. (2018) Estimation of clinical trial success 
rates and related parameters. Biostatistics. p 1–14
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Cancer drug programmes are more risky (on average) than previously thought
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20.9%

3.4%

POS1,App

Lo et al. (2018) Estimation of clinical trial success 
rates and related parameters. Biostatistics. p 1–14
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Lo et al. (2018) Estimation of clinical trial success 
rates and related parameters. Biostatistics. p 1–14
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• “Pfizer 3 pillars”
1. Suitable exposure (site of action, 

duration)
2. Sufficient target binding 
3. Adequate pharmacology

03/12/2019 www.letsgobeyond.co.uk/workshops 22

Can the flow of medicines be improved? Fundamental 
pharmacokinetic and pharmacological principles 
toward improving Phase II survival Drug Discovery 
Today. 17, 419–424 (2012)



THE OPEN 

PROJECT Pfizer 3 pillars (2012)

• “Pfizer 3 pillars”
1. Suitable exposure (site of action, 

duration)
2. Sufficient target binding 
3. Adequate pharmacology
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Can the flow of medicines be improved? Fundamental 
pharmacokinetic and pharmacological principles 
toward improving Phase II survival Drug Discovery 
Today. 17, 419–424 (2012)
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Nature Reviews Drug Discovery 13, 419–431 (2014) doi:10.1038/nrd4309
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Morgan P et al. Impact of a five-dimensional 
framework on R&D productivity at 
AstraZeneca. Nature Rev. Drug Discov. 17(3), 167-
181 (2018).

• POM demonstrates
• Target engagement at a predefined and 

quantifiable level in humans
• Functional effects

• POM is associated with project fate
• Consistent with Pfizer 3 pillar results

2012-2016
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* Ringel, M., Tollman, P., Hersch, G. & Schulze, 
U. Does size matter in R&D productivity? If not, 
what does? Nature Rev. Drug Discov. 12, 901–
902 (2013).

“The right culture”
It is vital to ensure that teams are 
encouraged and rewarded to ask the “killer 
question”, are recognized for the quality of 
their science, and are well connected to 
the external scientific community and 
supported by experienced leaders with a 
record of good judgment*

Lessons learned from the fate of AstraZeneca's drug 
pipeline: a five-dimensional framework  Nature 
Reviews Drug Discovery 13, 419–431 (2014) 
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Morgan P et al. (2018) Impact of a five-dimensional 
framework on R&D productivity at 
AstraZeneca. Nature Rev. Drug Discov. 17(3), 167-
181.

• Right tissue requires
• Human PK prediction
• Clinical POM
• Reduced failure due to PK/PD issues
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PROJECT Summary: The importance of translation
• Clinical endpoints

• Regulatory approvals is associated with ORR
• Obsession with ORR might be unhealthy
• Predicting ORR is important

• Success rate in oncology drug projects
• Limited by the lack of efficacy in Ph2 trials

• 3 pillars and 5Rs
• Key to success: 

Exposure ↔ Target Engagement ↔ Disease Modulation ↔ Outcome
• PK/PD supports: Target validation, biomarker selection, human PK prediction, 

safety, qualification of tumour models with clinical evidence

• Can we predict ORR in the clinics?

03/12/2019 www.letsgobeyond.co.uk/workshops 28



THE OPEN 

PROJECT

1.2 Clinical translation of 
xenograft models
• NCI: Mouse MTD efficacy does not predict clinical efficacy
• Chemo: AUC is important
• Chemo: Qualify A2780 (ovarian) xenograft model with PK/PD modelling
• Chemo & Targeted therapy: Preclinical efficacy => Clinical ORR
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Johnson et al, British Journal of Cancer (2001) 84(10), 1424–1431

• 2001 Method: Mouse MTD efficacy was compared with clinical response
• 2001 perspectives: For compounds with in vivo activity in >1/3 xenograft models, 

there was activity in >1 Phase II trials.
“39 agents with both xenograft data and Phase II clinical trials results”
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PROJECT Should mouse xenograft models be abandoned?
Mouse MTD efficacy was only moderately predictive of clinical 
response

Next question: What is the problem?
• Tumour biology difference in growth rates and microenvironment 

(e.g. surrounding blood vessels, immune cells, fibroblasts, signalling 
molecules, orthotopic location and extracellular matrix)?

• Exposure differences?
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• The ratio R=(AUC-mouse-MTD)/(AUC-humans) was computed for 9 

compounds
• Results: R<1 was a necessary, but insufficient condition for success
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Drug Clinical Result
Calculated Ratio:

(Mouse MTD AUC)
/(Human clin. AUC)

Calculation details

Carzelesin Failure 40 Table 2 (80/2)
DMP840 Failure 7 Table 2 (17.5/2.5)
MGI-114 Failure 7 p839, col2 text (214/33)

9-AC Failure 4 Kirstein et al., Clin. Canc. Res., 7, 358 (2001) 

Sulophenur Failure 3 Table 2 (8/3)
Topotecan Success 0.3 Table 2 (10/3)
Melphalan Success 0.3 Table 2 (1/3.5)
EPO906 Failure 0.3 See Backups
Irinotecan Success 0.2 Table 2 (16/100)

Peterson and Houghton, Eur. J. Canc., 40, 837 (2004)
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Looks like exposure difference is relevant 

Next question: By correcting the difference, can we find any 
consistency between preclinical models and clinical data?
• Case study: 10 successful chemotherapy drugs

03/12/2019 www.letsgobeyond.co.uk/workshops 33
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PROJECT Can we learn from approved chemotherapies?
Methods

• 10 chemotherapy drugs were tested on 
mouse A2780 ovarian carcinoma 
xenografts.

• PK/PD models were constructed to 
estimate the exposures needed for 
preclinical tumor shrinkage.

03/12/2019 www.letsgobeyond.co.uk/workshops 34

Rocchetti et al., Eur. J. Canc., 43, 1862 (2007)
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PK: All parameters published. 

PK verification: Model simulation is 
plotted to compare with published 
modelling results.

PD: 𝜆" and 𝑘" were not published 
in this paper, unfortunately

PD verification: Infer 𝜆" and 𝑘"
from tumour growth data and 
simulate PK/PD model at the 
expected values to compare with 
data and published simulation 
results

Rocchetti et al., Eur. J. Canc., 43, 1862 (2007)
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Publication Reproduction

Rocchetti et al., Eur. J. Canc., 43, 1862 (2007)

Tao’s reproduction of the modelling work (2019)
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ReproductionPublication

Rocchetti et al., Eur. J. Canc., 43, 1862 (2007)

Tao’s reproduction of the modelling work (2019)
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PROJECT Can we learn from approved chemotherapies?
Methods

• 10 chemotherapy drugs were tested on 
mouse A2780 ovarian carcinoma 
xenografts.

• PK/PD models were constructed to 
estimate the exposures needed for 
preclinical tumor shrinkage.

Results
• Strong correlations (R = 0.94) was 

observed between preclinical exposures 
needed for tumor shrinkage and the 
exposures achieved in the clinic under 
standard treatment. 
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4. Discussion

A recent PK-PD model provides drug-specific measurements
of the potency of anticancer compounds from preclinical
studies. On these bases, we investigated whether doses and
exposures required to achieve a clinical response in humans
can be predicted from the potency parameters k2 and CT esti-
mated in animals. A strong correlation was observed between
the parameter k2 and the systemic exposure in the clinical

use. Analogous results were obtained when CT estimates were
correlated with the clinical doses. The latter correlation is
consistent with the former one: in fact, CT = k0/k2, and the
parameter k0, characterising the growth rate of the tumour,

is relatively constant across the experiments of the present
study (see Table 3).

Even allowing for the limited number of drugs and the de-
gree of variability and uncertainty associated with the obser-
vations in the plots, the large interval of clinical doses covered
by the tested drugs, the appropriate ranking of the com-
pounds and the closeness of the data to the regression lines

provide a strong support to the use of this approach for an
early estimation of the active doses in humans of candidate
compounds. This can be easily obtained introducing the k2

and CT values, estimated from the first animal studies, into
the regression equations (plasma clearance in humans may
be derived using the common interspecies scaling proce-
dures) and making a simple extrapolation to the vertical axis.

We derived the approach using known anticancer drugs
with different mechanisms of action, including topoisomer-
ase inhibitors, antimicrotubule assembly inhibitors, antime-
tabolites and alkylating agents. This finding is consistent

with the concept that the PK-PD model used for estimating
the potency of the compounds is not intended to describe
the specific molecular mechanism of action, but merely re-
lates the degree of cell damage and cell death with the plasma
concentrations of the drugs,18,20 so that the model was also
successfully employed for modelling the PK-PD of compounds
with novel mechanism of action. Although no molecular tar-
geted agents are present in the dataset used for building the
correlations, preliminary analyses are also supporting the
use of this methodology for this kind of compound.

If further confirmed and extended, this approach might sig-

nificantly improve the drug discovery and development pro-
cess, which for the oncology therapeutic area is particularly
expensive and time-consuming. For example, the active dose
of a new compound, estimated as described here, can be com-
pared with the expected maximal tolerated dose based on tox-
icological findings or determined in phase I studies. This would
provide a further support to the risk evaluation process re-
quired to take decisions on the progression to the subsequent
phase II or III. As a consequence, ineffective drugs can be depri-
oritised and/or discarded earlier, the whole clinical develop-
ment program shortened and, in turn, the number of

patients undergoing ineffective treatments sensibly reduced.

Conflict of interest statement
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Fig. 3 – Relationship between the systemic exposure
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clinics (cumulative doses given in 3-week cycles) and k2

(potency parameter) estimated in animals. Regression per-
formed on log-log scale: intercept = 0.0835, slope = –1.03,
r = – 0.927.
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Looks like exposure is relevant to a large extent to clinical success!

Next question: Can we predict clinical failure?
• Case study: 8 chemo/targeted treatments for 10 indications with 

known clinical outcomes
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• What is the minimum preclinical efficacy required for clinical success?

• Can we establish a robust translational criteria?
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Method
A model-based method to predict 
clinical efficacy based on preclinical 
xenograft studies for both 
chemotherapies and targeted therapies

A minimum clinical efficacious exposure 
can be predicted for tumor cell-directed 
therapy.

Main Limitations
Attaining this minimum clinical exposure 
is a necessary but not sufficient
condition.

human %TGI derived from PK–PD modeling of our pre-
clinical studies was compared with overall response rates
from clinical trials, there was a significant correlation (Fig.
3B; r ¼ 0.91, P ¼ 0.0008). Agents that led to greater
simulated human%TGI in preclinical tumors led to greater
response rates in the clinic. These data illustrate the impor-
tance of correcting for differences in drug pharmacokinetics
and tolerability between mice and man.

Simulations using alternate clinical doses and
schedules are in line with clinical response

To explore whether our PK–PD models derived from
preclinical efficacy could correctly rank-order the clinical
outcome of agents given on alternative dose and schedules,
we carried out additional simulations using human phar-
macokinetics for docetaxel and 5-FU. Docetaxel and 5-FU
were chosen for these simulations as both agents have been
used clinically on several alternative dose and schedules.
Two regimens were simulated for docetaxel, a once every 3
week regimen (100 mg/m2 every 3 weeks; Docetaxel Reg-
imen A) and a weekly regimen (40 mg/m2 every week;
Docetaxel Regimen B; Fig. 4A). For 5-FU, 3 regimens were
simulated; a weekly regimen (600 mg/m2 every week; 5-FU
Regimen A), an intense 5-day regimen (500mg/m2 on days
1 to 5 of a 35-day regimen; 5-FU Regimen B) and a
continuous constant infusion regimen (300 mg/m2/d; 5-

FU Regimen C; Fig. 4B). Simulated human %TGI was
compared at Day 21 for docetaxel and Day 35 for 5-FU as
these represented the longest duration for one cycle of
treatment for the simulated regimens and would allow for
equitable comparison. For docetaxel, simulated human
%TGI for both regimens was comparable (Fig. 4C) and
aligned well with similar overall response in the clinic
observed for both regimens in metastatic breast cancer
(33%–34%; ref. 19). Similarly, simulated %TGI for 5-FU
rankedwell with the overall response observed in colorectal
cancer trials with the continuous constant infusion regimen
performing better than the weekly and the intense 5-day
regimens (refs. 20–22; Fig. 4D).

Discussion
Evaluation of anticancer agents in immune-deficient

mice transplanted with subcutaneous tumors largely of
human origin has been an important part of oncology drug
discovery and development for the past 30 years. Differ-
ences in growth rates, immune competence, stromal con-
tent, and orthotopic location are often cited as factors
contributing to the poor predictive value of murine xeno-
grafts. Indeed, mean tumor volume–doubling times for
untreated xenograft tumors in this articlewere approximate-
ly 10 days or less. Growth is much slower in cancer patients
with tumor volume–doubling times in the order of months
for breast and colon cancer and years for prostate cancer
(23). Other important differences between preclinical
tumor models in mice and humans include species differ-
ences in both pharmacokinetics and drug tolerability
(2, 4, 24). Given these differences we wished to calibrate
preclinical efficacy, normalized for species differences in
drug exposure, to clinical response. Establishing methods
that increase the correlationbetweenpreclinical and clinical
efficacy will help increase the success rate of drugs brought
forward, ultimately leading to improved patient outcomes
while simultaneously reducing drug development costs.

Population PK–PDmodeling offers a powerful approach
to improve the translatability of xenograft efficacy. Given
the high variability observed in tumor growth, population
PK–PD analysis provides a means to quantify the inherent
variability in the xenograft model and provide a more
robust characterization of the concentration/antitumor
response relationship. Simulations of xenograft response
using the established preclinical PK–PDmodels along with
human pharmacokinetics enable amore exact correction of
species differences in drug exposure. The PK–PD analysis
presented in this article revealed a strong correlation
between simulated human%TGI and overall response from
clinical trials, suggesting that xenograft/allograft efficacy is
predictive of clinical response (Fig. 3B). Importantly, this
correlation was not apparent when efficacy at maximally
tolerated doses in preclinical models was compared with
clinical response data showing the importance of normal-
izing preclinical and clinical drug exposure (Fig. 3A). Of
interest, the top-performing agents in preclinical models
and clinical response were all agents that target cancers with
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Figure 3. Plots of overall response versus observed %TGI at MTD in
xenograft/allograft studies (A) and overall response versus simulated
human %TGI (B) are shown for both molecular targeted agents and
chemotherapy. The correlation coefficient (r) and P values are shown for
each plot.
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human %TGI derived from PK–PD modeling of our pre-
clinical studies was compared with overall response rates
from clinical trials, there was a significant correlation (Fig.
3B; r ¼ 0.91, P ¼ 0.0008). Agents that led to greater
simulated human%TGI in preclinical tumors led to greater
response rates in the clinic. These data illustrate the impor-
tance of correcting for differences in drug pharmacokinetics
and tolerability between mice and man.

Simulations using alternate clinical doses and
schedules are in line with clinical response

To explore whether our PK–PD models derived from
preclinical efficacy could correctly rank-order the clinical
outcome of agents given on alternative dose and schedules,
we carried out additional simulations using human phar-
macokinetics for docetaxel and 5-FU. Docetaxel and 5-FU
were chosen for these simulations as both agents have been
used clinically on several alternative dose and schedules.
Two regimens were simulated for docetaxel, a once every 3
week regimen (100 mg/m2 every 3 weeks; Docetaxel Reg-
imen A) and a weekly regimen (40 mg/m2 every week;
Docetaxel Regimen B; Fig. 4A). For 5-FU, 3 regimens were
simulated; a weekly regimen (600 mg/m2 every week; 5-FU
Regimen A), an intense 5-day regimen (500mg/m2 on days
1 to 5 of a 35-day regimen; 5-FU Regimen B) and a
continuous constant infusion regimen (300 mg/m2/d; 5-

FU Regimen C; Fig. 4B). Simulated human %TGI was
compared at Day 21 for docetaxel and Day 35 for 5-FU as
these represented the longest duration for one cycle of
treatment for the simulated regimens and would allow for
equitable comparison. For docetaxel, simulated human
%TGI for both regimens was comparable (Fig. 4C) and
aligned well with similar overall response in the clinic
observed for both regimens in metastatic breast cancer
(33%–34%; ref. 19). Similarly, simulated %TGI for 5-FU
rankedwell with the overall response observed in colorectal
cancer trials with the continuous constant infusion regimen
performing better than the weekly and the intense 5-day
regimens (refs. 20–22; Fig. 4D).

Discussion
Evaluation of anticancer agents in immune-deficient

mice transplanted with subcutaneous tumors largely of
human origin has been an important part of oncology drug
discovery and development for the past 30 years. Differ-
ences in growth rates, immune competence, stromal con-
tent, and orthotopic location are often cited as factors
contributing to the poor predictive value of murine xeno-
grafts. Indeed, mean tumor volume–doubling times for
untreated xenograft tumors in this articlewere approximate-
ly 10 days or less. Growth is much slower in cancer patients
with tumor volume–doubling times in the order of months
for breast and colon cancer and years for prostate cancer
(23). Other important differences between preclinical
tumor models in mice and humans include species differ-
ences in both pharmacokinetics and drug tolerability
(2, 4, 24). Given these differences we wished to calibrate
preclinical efficacy, normalized for species differences in
drug exposure, to clinical response. Establishing methods
that increase the correlationbetweenpreclinical and clinical
efficacy will help increase the success rate of drugs brought
forward, ultimately leading to improved patient outcomes
while simultaneously reducing drug development costs.

Population PK–PDmodeling offers a powerful approach
to improve the translatability of xenograft efficacy. Given
the high variability observed in tumor growth, population
PK–PD analysis provides a means to quantify the inherent
variability in the xenograft model and provide a more
robust characterization of the concentration/antitumor
response relationship. Simulations of xenograft response
using the established preclinical PK–PDmodels along with
human pharmacokinetics enable amore exact correction of
species differences in drug exposure. The PK–PD analysis
presented in this article revealed a strong correlation
between simulated human%TGI and overall response from
clinical trials, suggesting that xenograft/allograft efficacy is
predictive of clinical response (Fig. 3B). Importantly, this
correlation was not apparent when efficacy at maximally
tolerated doses in preclinical models was compared with
clinical response data showing the importance of normal-
izing preclinical and clinical drug exposure (Fig. 3A). Of
interest, the top-performing agents in preclinical models
and clinical response were all agents that target cancers with
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PROJECT Summary: Clinical translation of xenograft models 
• Mouse MTD efficacy was only moderately predictive of clinical 

response
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Mouse MTD PK

Clinical activity
(Test data)
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PROJECT Summary: Clinical translation of xenograft models 
• Strong correlations was observed between preclinical exposures 

needed for tumor shrinkage and the exposures achieved in the clinic 
under standard treatment
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(Training data)

Clinical PD

Clinical AUC
(Test data)

Assume identical PK/PD relationship

PK/PD 
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PROJECT Summary: Clinical translation of xenograft models 
• Preclinical efficacy is strongly associated with clinical ORR for some 

chemotherapies and targeted therapies in certain preclinical models
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Mouse PK

Preclinical PD
(Training data)
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Clinical TGI

Clinical PK

PK/PD 
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PK/PD 
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Clinical ORR
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PROJECT Summary: Clinical translation of xenograft models 
• Translation needs to consider clinical PK
• Translation may assume identical preclinical and clinical PK/PD relationships
• The following scheme makes comparison more straightforward and it requires 

understanding of growth of preclinical and clinical tumours
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Mouse PK

Preclinical PD
(Training data)

Clinical ORR
(Test data)

Clinical PK

PK/PD 
model

PK/PD 
model

Validation

Assume identical PK/TE relationship

Figure out TE/DM relationship

Target Engagement: TE
Disease Modulation: DM 
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Lecture 3. Clinical translation of syngeneic models
• Adaptive immunity to tumours
• Resistance mechanisms to immunotherapy
• Modelling efficacy: RT/α-PD-L1 combi in CT26 syngeneic tumour model
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Bol KF et al. (2016) Dendritic Cell–Based 
Immunotherapy: State of the Art and Beyond. 
Clin Cancer Res. 22(8):1897-906

Treatment strategies
• Induce priming: Stimulating 

antigen presenting cells (APC, e.g. 
dendritic cell)

• Induce clonal selection and 
memory response: Cancer 
vaccine, ex vivo culture of 
tumour-specific T cells

• Inhibit regulatory T cells
• Block co-inhibitory signals (e.g. 

αPD-1, αPD-L1, αCTLA4)
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Cristescu R et al. (2018) Pan-tumor genomic 
biomarkers for PD-1 checkpoint blockade-based 
immunotherapy. Science. 362(6411).
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Tang MW et al. (2015) Classifying Cancers Based 
on T-cell Infiltration and PD-L1. Cancer Res. 
75(11):2139-45.
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PROJECT Extrinsic resistance: Harsh tumour microenvironment
Downregulate MHC / antigen 

Melanoma’s intrinsic β-catenin

• No CCL4 ⟹ No Ag presentation

PD-1/PD-L1, CTLA4

Tumour VEGF-A, PGE2, IL-10

• Trigger T cell apoptosis

Dysregulated energy metabolism

• Lacks glucose

• Hypoxia ⟹ Adenosine↑

• Oxidative stress

Myeloid-derived suppressor cell

• Depletes essential amino acids

• IDO promotes T cell tolerance

PD-1/PD-L1, CTLA4

Myofibroblasts: TGF-β
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Picture adapted from Chen DS & Mellman I. 
(2013) Oncology meets immunology: the cancer-
immunity cycle. Immunity. 39(1):1-10. 

1

6

5

6

4

1

2

5

3

2

Myofibroblast: TGF-β

4

7 7



THE OPEN 

PROJECT Extrinsic resistance: Harsh tumour microenvironment

03/12/2019 www.letsgobeyond.co.uk/workshops 50

6

5

4

1

2

CD40 agonist Ab
STING agonist
TLR/RIG-1 agonist
Tumour vaccines
Adoptive T cell therapy

Myofibroblast: TGF-β

Glutaminase inhibitors
Glycolysis inhibitors
Lactate export inhibitors
Hypoxia prodrugs
Oxygen carrier drugs
OxPhos inhibitors

Arginase inhibitors
PDE5 inhibitors
STAT3 inhibitors
IDO inhibitors

STING agonist
PD-L1 inhibitors
VEGF/PDGF inhibitors

TGF-β resistant T cell

PD-1 / PD-L1 inhibitors
CTLA-4 inhibitors

7

PD-1 / PD-L1 inhibitors
CTLA-4 inhibitors

Downregulate MHC / antigen 

Melanoma’s intrinsic β-catenin

• No CCL4 ⟹ No Ag presentation

PD-1/PD-L1, CTLA4

Tumour VEGF-A, PGE2, IL-10

• Trigger T cell apoptosis

Dysregulated energy metabolism

• Lacks glucose

• Hypoxia ⟹ Adenosine↑

• Oxidative stress

Myeloid-derived suppressor cell

• Depletes essential amino acids

• IDO promotes T cell tolerance

PD-1/PD-L1, CTLA4

Myofibroblasts: TGF-β

Picture adapted from Chen DS & Mellman I. 
(2013) Oncology meets immunology: the cancer-
immunity cycle. Immunity. 39(1):1-10. 

1

6

5

3

2

4

7

Ratio / Chemo / Targeted



THE OPEN 

PROJECT Intrinsic resistance: Primary vs Acquired

03/12/2019 www.letsgobeyond.co.uk/workshops 51

• Primary resistance: No response
• Driven by mutations
• Melanoma and colon cancer: JAK1/2 loss-of-function mutations ⇒ PD-L1↓
• Lung adenocarcinoma: STK11/LKB1 co-mutation in KRAS-mutant cancers  ⇒ αPD-L1 

resistance

• Acquired resistance: Progression of disease post response 
• Leads to disease progression after 6 months of therapy
• Lung cancer: Loss of B2M (and hence HLA class I expression) ⇒ αPD-1 / αPD-L1 

resistance
Shin DS et al. (2017) Primary Resistance to PD-1 Blockade 
Mediated by JAK1/2 Mutations. Cancer Discovery 
7(2):188-201.

Skoulidis F et al. (2018) STK11/LKB1 Mutations and PD-1 
Inhibitor Resistance in KRAS-Mutant Lung 
Adenocarcinoma. Cancer Discov. 8(7):822-835.

Gettinger S et al. (2017) Impaired HLA Class I Antigen 
Processing and Presentation as a Mechanism of Acquired 
Resistance to Immune Checkpoint Inhibitors in Lung 
Cancer . Cancer Discov. 7(12):1420-1435. 
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Sharma, P. et al. (2017) Primary, Adaptive, and Acquired 
Resistance to Cancer Immunotherapy. CELL, 168(4), 707-
723.

Primary resistance: No response
• Driven by mutations

Acquired resistance: Progression of 
disease post response 
• Leads to disease progression after 6 

months of therapy
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PROJECT Immuno-oncology tumour model challenges
• Characterise baseline

• How does the tumour model grow under the control condition?

• Confirm mechanism of action of treatment
• Exposure ⇔ Target engagement ⇔ Disease Modulation ⇔ Efficacy
• Is innate / adaptive immunity appropriately activated?
• How does the tumour model respond to treatment?

• Translation
• How to extrapolate the preclinical data to forecast clinical efficacy?
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PROJECT CT26 control experiment overview
• Tumour volume at day 3

• 49~126mm3

• Tumour growth 
• No Exceptions: Spontaneous regression, no 

growth, irregular growth rates
• Variable speeds and sizes reached

• Possible growth rate law
• Logistic: Postulates a maximum tumour volume. 

Used in Kosinsky et al. (2018) J Immunother Cancer.
• Exponential: The most appropriate rate law for 

these data
• Cubic (i.e. diameter expands linearly): Nearly as 

good as exponential rate law
• Exponential-linear
• Gompertz
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Data: Dovedi SJ et al. Acquired Resistance to 
Fractionated Radiotherapy Can Be Overcome by 
Concurrent PD-L1 Blockade. Cancer Res. 74(19): 5458-
68 (2014).
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Dovedi SJ et al. (2017) Fractionated Radiation Therapy 
Stimulates Antitumor Immunity Mediated by Both 
Resident and Infiltrating Polyclonal T-cell Populations 
when Combined with PD-1 Blockade. Clin Cancer Res.
23(18):5514-5526.
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Dovedi SJ et al. (2017) Fractionated Radiation Therapy 
Stimulates Antitumor Immunity Mediated by Both 
Resident and Infiltrating Polyclonal T-cell Populations 
when Combined with PD-1 Blockade. Clin Cancer Res.
23(18):5514-5526.
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Dovedi SJ et al. (2017) Fractionated Radiation Therapy 
Stimulates Antitumor Immunity Mediated by Both 
Resident and Infiltrating Polyclonal T-cell Populations 
when Combined with PD-1 Blockade. Clin Cancer Res.
23(18):5514-5526.
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• RT triggers Immunogenic Cell Death

• Transient increase in tumour antigens
• Damage-associated molecular patterns (DAMPs) release is RT dose dependent
• DAMPs ➔ dendritic cells ➔ macrophage phagocytosis / antigen presentation

• PD-L1 responses
• RT ➔ active immune cells ➔ interferon 𝛾➔ tumour PD-L1
• CD8+ cell depletion ⊣ RT-dependent PD-L1 induction
• Tumour PD-L1 ⊣ T cell proliferation, pro-inflammatory cytokine production, 

antigen-dependent cytotoxicity
• The PD-L1 induction by RT lasts over 7 days

• CD8+:Treg ratio
• Control condition: CD8+:Treg ratio decreases over time
• CD4+ cell (Th1/2 and Treg) depletion ➔ PD-L1
• Syngeneic CT26 tumours: High baseline Treg cell count in tumour
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Dovedi SJ et al. (2014) Acquired Resistance to 
Fractionated Radiotherapy Can Be Overcome by 
Concurrent PD-L1 Blockade. Cancer Res. 74(19): 5458-68.

Twyman-Saint VC, et al. (2015) Radiation
and dual checkpoint blockade activate non-redundant 
immune mechanisms in cancer. Nature. 520:373–7.
Sharabi AB, et al. (2015) Stereotactic

Radiation Therapy Augments Antigen-Specific PD-1-
Mediated Antitumor Immune Responses via
Cross-Presentation of Tumor Antigen. Cancer Immunol. 
Res. 3:345–55.



THE OPEN 

PROJECT

NON-
DIFFERENTIATED 

EFFECTOR T 
CELLS

Model diagram

03/12/2019 www.letsgobeyond.co.uk/workshops 59

LIVE 
TUMOUR 
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PD-L1

YYYαPD-L1

You T. (2019) Modelling of RT/𝛼PD-L1 combination 
efficacy in CT26 syngeneic mouse model. The Open 
Project. https://github.com/TheOpenProject/

https://github.com/TheOpenProject/
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• Radio: 2Gy x 5 (days 7~11)
• Tumour shrinkage in most mice post day 10
• Tumour regrowth starts after day 15
• No complete tumour rejection

• 𝛼PD-L1: 3qw for 3 weeks 
• 1/10 complete tumour rejection
• 9/10 delayed tumour growth

RT: Dovedi SJ et al. Acquired Resistance to Fractionated 
Radiotherapy Can Be Overcome by Concurrent PD-L1 
Blockade. Cancer Res. 74(19): 5458-68 (2014).

𝛼PD-L1: Dovedi SJ et al. Fractionated Radiation Therapy 
Stimulates Antitumor Immunity Mediated by Both 
Resident and Infiltrating Polyclonal T-cell Populations 
when Combined with PD-1 Blockade. Clin Cancer Res.
23(18):5514-5526 (2017).
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RT: Dovedi SJ et al. (2014) Acquired Resistance to 
Fractionated Radiotherapy Can Be Overcome by 
Concurrent PD-L1 Blockade. Cancer Res. 74(19): 5458-
68.

𝛼PD-L1: Dovedi SJ et al. (2017) Fractionated Radiation 
Therapy Stimulates Antitumor Immunity Mediated by 
Both Resident and Infiltrating Polyclonal T-cell 
Populations when Combined with PD-1 Blockade. Clin 
Cancer Res. 23(18):5514-5526.

You T. (2019) Modelling of RT/𝛼PD-L1 combination 
efficacy in CT26 syngeneic mouse model. The Open 
Project. https://github.com/TheOpenProject/

https://github.com/TheOpenProject/
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• 2Gy x 5 + 𝛼PD-L1 (days 7)
• 3/5 complete tumour rejection
• 2/5 delayed tumour growth

• 2Gy x 5 + 𝛼PD-L1 (days 12)
• 4/7 complete tumour rejection
• 3/7 delayed tumour growth

• 2Gy x 5 + 𝛼PD-L1 (days 19)
• 1/7 overall tumour shrinkage
• 6/7 delayed tumour growth

• Concurrent dosing has highest efficacy

RT: Dovedi SJ et al. (2014) Acquired Resistance to 
Fractionated Radiotherapy Can Be Overcome by 
Concurrent PD-L1 Blockade. Cancer Res. 74(19): 5458-
68.

𝛼PD-L1: Dovedi SJ et al. (2017) Fractionated Radiation 
Therapy Stimulates Antitumor Immunity Mediated by 
Both Resident and Infiltrating Polyclonal T-cell 
Populations when Combined with PD-1 Blockade. Clin 
Cancer Res. 23(18):5514-5526.



THE OPEN 

PROJECT Combi-treatment of CT26

03/12/2019 www.letsgobeyond.co.uk/workshops 63

You T. (2019) Modelling of RT/𝛼PD-L1 combination 
efficacy in CT26 syngeneic mouse model. The Open 
Project. https://github.com/TheOpenProject/

RT: Dovedi SJ et al. (2014) Acquired Resistance to 
Fractionated Radiotherapy Can Be Overcome by 
Concurrent PD-L1 Blockade. Cancer Res. 74(19): 5458-
68.

𝛼PD-L1: Dovedi SJ et al. (2017) Fractionated Radiation 
Therapy Stimulates Antitumor Immunity Mediated by 
Both Resident and Infiltrating Polyclonal T-cell 
Populations when Combined with PD-1 Blockade. Clin 
Cancer Res. 23(18):5514-5526.

https://github.com/TheOpenProject/
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You T. (2019) Modelling of RT/𝛼PD-L1 combination 
efficacy in CT26 syngeneic mouse model. The Open 
Project. https://github.com/TheOpenProject/

https://github.com/TheOpenProject/
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• Translation needs to consider clinical PK
• Translation may not assume identical preclinical and clinical PK/PD relationships
• Translation requires understanding of PK/TE/DM relationships of preclinical and 

clinical tumours
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Mouse PK

Preclinical PD
(Training data)

Clinical PD
(Test data)

Clinical PK

PK/PD 
model

PK/PD 
model

Validation

Figure out PK/TE relationship

Figure out TE/DM relationship

Target Engagement: TE
Disease Modulation: DM 
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translating syngeneic model results into the clinics?
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Chen DS & Mellman I. 
(2013) Oncology meets 
immunology: the 
cancer-immunity cycle. 
Immunity. 39(1):1-10. 

Downregulate MHC / antigen 

Melanoma’s intrinsic β-catenin

• No CCL4 ⟹ No Ag presentation

PD-1/PD-L1, CTLA4

Tumour VEGF-A, PGE2, IL-10

• Trigger T cell apoptosis

Dysregulated energy metabolism

• Lacks glucose

• Hypoxia ⟹ Adenosine↑

• Oxidative stress

Myeloid-derived suppressor cell

• Depletes essential amino acids

• IDO promotes T cell tolerance

PD-1/PD-L1, CTLA4

Myofibroblasts: TGF-β
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What is the one action I will take 
after the workshop and why?
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Supporting slides
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Lo et al. (2018) Estimation of clinical trial success 
rates and related parameters. Biostatistics. p 1–14

• Phase-by-phase counting
• POS1,2 = 1

• POS2,3 = "
*

• POS3,App = "*
• POS1,App =1x "* x  "* = "+
• Widely used in the past
• Ignore missing trials
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Lo et al. (2018) Estimation of clinical trial success 
rates and related parameters. Biostatistics. p 1–14

• Path-by-path counting
• Missing Phase 2 is inferred
• POS1,2 = 1
• POS2,3 = *

,

• POS3,App = "
*

• POS1,App =1x *
,

x "
*

= "
,

• Used by Lo et al
• Considers missing, in progress and terminated trials
• More accurate description than phase-by-phase
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• Trial status

• Conservation law
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Estimation of clinical trial success rates and related parameters 3

Some trials are missing end-dates due to the failure of their sponsors to report this information. Since
these dates are required by our algorithm, we estimate them by assuming that trials lasted the median
duration of all other trials with similar features. Only 14.6% (59 208) of the data points required the
estimation of end-dates.

3. MODELING THE DRUG DEVELOPMENT PROCESS

To avoid confusion and facilitate the comparison of our results with those in the extant literature, we begin
by defining several key terms. A drug development program is the investigation of a particular drug for
a single indication (see top diagram of Figure S2 of the supplementary material available at Biostatistics
online). A drug development program is said to be in Phase i if it has at least one Phase i clinical trial.
If a Phase i clinical trial concludes and its objectives are met, this trial is said to be completed. If it is
terminated prematurely for any reason, except in the case that it has positive results, the trial is categorized
as failed. Conditioned on one or more trial(s) being completed, the sponsor can choose to either pursue
Phase i + 1 trials, or simply terminate development. If the company chooses the former option, the drug
development program is categorized as a success in Phase i, otherwise, it will be categorized as terminated
in Phase i. See Figure S2 (bottom) of the supplementary material available at Biostatistics online for an
illustration. The POS for a given Phase i, denoted by POSi,i+1, is defined as the probability that the drug
development program advances to the next phase. The probability of getting a drug development program
in Phase i through to approval is denoted by POSi,APP. Hence the overall probability of success—moving
a drug from Phase 1 to approval, which Hay and others (2014) calls the likelihood of approval (LOA)—is
POS1,APP.

The proper interpretation of drug development programs from clinical trial data requires some under-
standing of the drug development process, especially in cases of missing data. This is particularly important
for estimating a drug candidate’s POS1,APP, which is typically estimated by multiplying the empirical POS
of Phase 1 (safety), 2 (efficacy for a given indication), and 3 (efficacy for larger populations and against
alternatives) trials. If, for example, Phase 2 data are missing for certain approved drugs, the estimated
POS1,APP would be biased downward. Here, we take a different approach to estimating POSs.

Consider an idealized process in which every drug development program passes through Phase 1, 2,
and 3 trials, in this order. This is plausible, since each of these stages involves distinct predefined tests, all
of which are required by regulators in any new drug application (NDA). If we observe data for Phases 1
and 3 but not Phase 2 for a given drug-indication pair, our idealized process implies that there was at least
one Phase 2 trial that occurred, but is missing from our data set. Accordingly, we impute the successful
completion of Phase 2 in these cases. There exist some cases where Phase 2 trials are skipped, as with the
recent example of Aducanumab (BIIB037), Biogen’s Alzheimer’s candidate, as reported by Root (2014).
Since skipping Phase 2 trials is motivated by compelling Phase 1 data, imputing the successful completion
of Phase 2 trials in these cases to trace drug development paths may not be a bad approximation. In addition,
we make the standard assumption that Phase 1/2 and Phase 2/3 trials are to be considered as Phase 2 and
Phase 3, respectively.

These assumptions allow us to more accurately reconstruct ‘drug development paths’ for individual
drug-indication pairs, which in turn yield more accurate POS estimates. Let nj be the number of drug
development paths with observed Phase j trials, and nj

s be the number of drug development paths where
we observe phase transitions of state s of Phase j (defined below).

s =

⎧
⎪⎨

⎪⎩

ip, if all the trials are in progress
t, if the program failed to proceed to phase i + 1 (i.e., terminated)
m, if the phase transition can be inferred to be missing
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Equation 3.1 is the conservation law for drug development paths in Phase j + 1.

nj+1 = nj + nj
m − nj

ip − nj
t ∀j = 1, 2, 3 (3.1)

The POS from any one state to the next, POSj,j+1, is thus the ratio of the number of drug development
projects in Phase j + 1, both observed and non-observed, to the number of drug development projects in
Phase j, both observed and non-observed:

POSj,j+1(Path-by-Path) = nj+1

nj + nj
m − nj

ip

(3.2)

Given our model, we can now compute POS1,APP by finding the proportion of development paths that
made it from Phase 1 to Approval:

POS1,APP(Path-by-Path) = nApproval

n1 + n1
m − n1

ip − n2
ip − n3

ip
(3.3)

We term this the ‘path-by-path’approach. In contrast, extant papers define the phase transition probabil-
ity as the ratio of observed phase transitions to the number of observed drug development programs in Phase
i and multiply the individual phase probabilities to estimate the overall POS. We term this the ‘phase-
by-phase’ approach, which we shall differentiate from the path-by-path computation by a superscript
pas follows:

POSp
j,j+1 = nj+1 − nj

m

nj − nj
ip

(3.4)

POSp
1,APP =

∏

j∈{1,2,3}
POSp

j,j+1 (3.5)

Implicit in the path-by-path computation method is the assumption that we have relatively complete
information about the trials involved in drug development programs. This is true of our data set, as we
are analyzing relatively recent years where trial pre-registration is a prerequisite for publication in major
medical journals and use of the studies as supporting evidence for drug applications.

However, this assumption breaks down when we look at short windows of duration, for example,
in a rolling window analysis to estimate the change in the POS over time. In such cases, we default
back to the ‘phase-by-phase’ estimation to get an insight into the trend. This is done by considering
only those drug development programs with phases that ended between t1 and t2 in the computation of
the POS.

POSp
j,j+1(t1, t2) = nj+1(t1, t2) − nj

m(t1, t2)

nj(t1, t2) − nj
ip(t1, t2)

(3.6)

POSp
1,APP(t1, t2) =

∏

j∈{1,2,3}
POSp

j,j+1(t1, t2) (3.7)

We further note that if no phase transitions are missing, the path-by-path and phase-by-phase methods
should produce the same results, but the former will be more representative of actual approval rates if
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Estimation of clinical trial success rates and related parameters 3

Some trials are missing end-dates due to the failure of their sponsors to report this information. Since
these dates are required by our algorithm, we estimate them by assuming that trials lasted the median
duration of all other trials with similar features. Only 14.6% (59 208) of the data points required the
estimation of end-dates.

3. MODELING THE DRUG DEVELOPMENT PROCESS

To avoid confusion and facilitate the comparison of our results with those in the extant literature, we begin
by defining several key terms. A drug development program is the investigation of a particular drug for
a single indication (see top diagram of Figure S2 of the supplementary material available at Biostatistics
online). A drug development program is said to be in Phase i if it has at least one Phase i clinical trial.
If a Phase i clinical trial concludes and its objectives are met, this trial is said to be completed. If it is
terminated prematurely for any reason, except in the case that it has positive results, the trial is categorized
as failed. Conditioned on one or more trial(s) being completed, the sponsor can choose to either pursue
Phase i + 1 trials, or simply terminate development. If the company chooses the former option, the drug
development program is categorized as a success in Phase i, otherwise, it will be categorized as terminated
in Phase i. See Figure S2 (bottom) of the supplementary material available at Biostatistics online for an
illustration. The POS for a given Phase i, denoted by POSi,i+1, is defined as the probability that the drug
development program advances to the next phase. The probability of getting a drug development program
in Phase i through to approval is denoted by POSi,APP. Hence the overall probability of success—moving
a drug from Phase 1 to approval, which Hay and others (2014) calls the likelihood of approval (LOA)—is
POS1,APP.

The proper interpretation of drug development programs from clinical trial data requires some under-
standing of the drug development process, especially in cases of missing data. This is particularly important
for estimating a drug candidate’s POS1,APP, which is typically estimated by multiplying the empirical POS
of Phase 1 (safety), 2 (efficacy for a given indication), and 3 (efficacy for larger populations and against
alternatives) trials. If, for example, Phase 2 data are missing for certain approved drugs, the estimated
POS1,APP would be biased downward. Here, we take a different approach to estimating POSs.

Consider an idealized process in which every drug development program passes through Phase 1, 2,
and 3 trials, in this order. This is plausible, since each of these stages involves distinct predefined tests, all
of which are required by regulators in any new drug application (NDA). If we observe data for Phases 1
and 3 but not Phase 2 for a given drug-indication pair, our idealized process implies that there was at least
one Phase 2 trial that occurred, but is missing from our data set. Accordingly, we impute the successful
completion of Phase 2 in these cases. There exist some cases where Phase 2 trials are skipped, as with the
recent example of Aducanumab (BIIB037), Biogen’s Alzheimer’s candidate, as reported by Root (2014).
Since skipping Phase 2 trials is motivated by compelling Phase 1 data, imputing the successful completion
of Phase 2 trials in these cases to trace drug development paths may not be a bad approximation. In addition,
we make the standard assumption that Phase 1/2 and Phase 2/3 trials are to be considered as Phase 2 and
Phase 3, respectively.

These assumptions allow us to more accurately reconstruct ‘drug development paths’ for individual
drug-indication pairs, which in turn yield more accurate POS estimates. Let nj be the number of drug
development paths with observed Phase j trials, and nj

s be the number of drug development paths where
we observe phase transitions of state s of Phase j (defined below).

s =

⎧
⎪⎨

⎪⎩

ip, if all the trials are in progress
t, if the program failed to proceed to phase i + 1 (i.e., terminated)
m, if the phase transition can be inferred to be missing
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Equation 3.1 is the conservation law for drug development paths in Phase j + 1.

nj+1 = nj + nj
m − nj

ip − nj
t ∀j = 1, 2, 3 (3.1)

The POS from any one state to the next, POSj,j+1, is thus the ratio of the number of drug development
projects in Phase j + 1, both observed and non-observed, to the number of drug development projects in
Phase j, both observed and non-observed:

POSj,j+1(Path-by-Path) = nj+1

nj + nj
m − nj

ip

(3.2)

Given our model, we can now compute POS1,APP by finding the proportion of development paths that
made it from Phase 1 to Approval:

POS1,APP(Path-by-Path) = nApproval

n1 + n1
m − n1

ip − n2
ip − n3

ip
(3.3)

We term this the ‘path-by-path’approach. In contrast, extant papers define the phase transition probabil-
ity as the ratio of observed phase transitions to the number of observed drug development programs in Phase
i and multiply the individual phase probabilities to estimate the overall POS. We term this the ‘phase-
by-phase’ approach, which we shall differentiate from the path-by-path computation by a superscript
pas follows:

POSp
j,j+1 = nj+1 − nj

m

nj − nj
ip

(3.4)

POSp
1,APP =

∏

j∈{1,2,3}
POSp

j,j+1 (3.5)

Implicit in the path-by-path computation method is the assumption that we have relatively complete
information about the trials involved in drug development programs. This is true of our data set, as we
are analyzing relatively recent years where trial pre-registration is a prerequisite for publication in major
medical journals and use of the studies as supporting evidence for drug applications.

However, this assumption breaks down when we look at short windows of duration, for example,
in a rolling window analysis to estimate the change in the POS over time. In such cases, we default
back to the ‘phase-by-phase’ estimation to get an insight into the trend. This is done by considering
only those drug development programs with phases that ended between t1 and t2 in the computation of
the POS.

POSp
j,j+1(t1, t2) = nj+1(t1, t2) − nj

m(t1, t2)

nj(t1, t2) − nj
ip(t1, t2)

(3.6)

POSp
1,APP(t1, t2) =

∏

j∈{1,2,3}
POSp

j,j+1(t1, t2) (3.7)

We further note that if no phase transitions are missing, the path-by-path and phase-by-phase methods
should produce the same results, but the former will be more representative of actual approval rates if
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1. Suitable exposure (site of action, duration)
2. Sufficient target binding 
3. Adequate pharmacology
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Can the flow of medicines be improved? Fundamental 
pharmacokinetic and pharmacological principles 
toward improving Phase II survival Drug Discovery 
Today. 17, 419–424 (2012)
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Morgan P et al. Impact of a five-dimensional 
framework on R&D productivity at 
AstraZeneca. Nature Rev. Drug Discov. 17(3), 167-
181 (2015).

• “The most important of the 5Rs”
• Verify target validity using genome editing

• Invalidate a target earlier than previously possible
• CRISPR

• Invalidate MTH1 as an oncology target
• Identify isotypes for SIK- mediated inflammatory responses

• TALEN: Transcription activator-like effector nuclease
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Morgan P et al. Impact of a five-dimensional 
framework on R&D productivity at 
AstraZeneca. Nature Rev. Drug Discov. 17(3), 167-
181 (2015).

• Improve target validation to reduce attrition in early-stage discovery
• Genome editing
• Genomics
• Humanised 

preclinical models
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Morgan P et al. Impact of a five-dimensional 
framework on R&D productivity at 
AstraZeneca. Nature Rev. Drug Discov. 17(3), 167-
181 (2015).

• Adapting “right commercial potential”
• Projects can be mistakenly driven by an overemphasis on commercial potential
• Candidate selection 

• It is years from launch: commercial valuation cannot be accurate
• This decision point focuses primarily on efficacy, safety and differentiation

• Ph III investment decision needs a thorough commercial assessment
• Patient population size
• Unmet medical need
• Required differentiation (vs the standard of care)
• Payer criteria for reimbursement
• Competitive environment
• Sales projections
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• Limitations of the approach/conclusions
• How to apply translational modelling framework to best support drug 

projects?
• Where does it add value?
• How define and support immuno-oncology projects?
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Modulation Outcome

In vitro Medium Direct / 
Indirect DM Efficacy

In vivo Plasma 
Tissue 

Direct / 
Indirect DM Efficacy

Clinical Plasma Direct / 
Indirect DM Efficacy
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• Human PK prediction: Small molecules, Large molecules (PBPK)
• Safety prediction: Cardiac safety, bone marrow toxicity
• Decision making with PK/PD modelling

03/12/2019 www.letsgobeyond.co.uk/workshops 78



THE OPEN 

PROJECT

Contacts

Beyond Consulting Ltd

www.letsgobeyond.co.uk

tao.you@letsgobeyond.co.uk



THE OPEN 

PROJECT

Contacts

OncoBioinformatics Consulting

www.oncobioinformatics.co.uk

john@oncobioinformatics.co.uk

john.prime@horizondiscovery.com



THE OPEN 

PROJECT The Open Project (TOP)

1/27/16 www.letsgobeyond.co.uk/workshops 81

YOU?

https://github.com/TheOpenProject/
Why should I care? 

Who should contribute to TOP? 
Why contribute to The Open Project (TOP)? 

Vision & mission of TOP 
What is TOP doing? 

Ways to contribute to TOP 
Who contributes to TOP?

The spirit of TOP

Develop, validate and improve quantitative methods and tools for accurate experimental design to 
enable tumour model translation in drug discovery and development

• Open: Any one can join for free to share data, models, codes and ideas
• Transparent: All results are properly documented to help the community

• Meritocracy: Participants need to demonstrate understanding of the code, rules, and culture of 
the project before being invited to join

https://github.com/TheOpenProject/


THE OPEN 

PROJECT

Disclaimer The content of this presentation may be subject to alterations and updates. Therefore, information expressed 
in this presentation may not reflect the most up-to-date information, unless otherwise notified by an authorised 
representative independent of this presentation. No contractual relationship is created by this presentation by any person 
unless specifically indicated by agreement in writing.

GNU General Public Licence v3.0
• https://github.com/TheOpenProject/TOM/blob/master/LICENSE

• Permissions of this strong copyleft licence are conditioned on making available complete source code of licensed works 
and modifications, which include larger works using a licensed work, under the same licence. Copyright and licence 
notices must be preserved. Contributors provide an express grant of patent rights.

• The Open Project is hosted on GitHub at https://github.com/theopenproject
• Contact Information:

Please contact Tao You: Email: tao.you@letsgobeyond.co.uk or visit www.letsgobeyond.co.uk.
• Created in Microsoft® PowerPoint for Mac. Version 16.30 (19101301)
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Permissions Limitations Conditions

√ Commercial use
√ Modifications
√ Distribution
√ Patent use
√ Private use

× Liability
× Warranty

• License and copyright notice
• State changes
• Disclose source
• Same license

https://github.com/TheOpenProject/TOM/blob/master/LICENSE
https://github.com/theopenproject

